Synthesis and conformational studies of 9-substituted [3.3]metacyclophane-2,11-diones and conversion to the corresponding [3.3]metacyclophanes

Tomoe Shimizu, Ryuji Ueno, Masa'odi Ziewandy and Takehiko Yamato*
Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502, Japan

Abstract

Various anti-9-substituted [3.3]MCP-2,11-diones are exclusively obtained by the coupling reaction of the corresponding 1,3-bis(bromomethyl)benzenes and 2,6-bis[2-isocyano-2-(tolylsulfonyl)ethyl]-4-tert-butylbenzenes in dimethylformamide (DMF) with an excess of sodium hydride, from which the corresponding syn-[3.3]MCP are synthesised via anti-syn-isomerisation during the Wolff-Kishner reduction.

Keywords: metacyclophanes, cyclisation, conformation, $\mathrm{CH}-\pi$-interaction, Wolff-Kishner reduction, anti-syn-isomerisation

The synthesis and stereochemical aspects of conformationally mobile [3.3]MCPs (MCP = metacyclophane) have been of interest for the past decade, with particular attention ${ }^{1-3}$ paid to dithia[3.3]MCPs, which possess an anti-stepped conformation. The pioneering work of the conformational investigation of 2,11-dithia[3.3]MCPs was reported by Vögtle et al. ${ }^{4}$ Shinmyozu and his co-workers ${ }^{5}$ have reported the first preparation and conformational behaviour in the carbocyclic [3.3]MCPs and their analogues. [3.3]MCP exists in the syn geometry with a chair-chair arrangement of the trimethylene chains in the crystal state. The preferred geometry of [3.3]MCP in solutionis also a syn on the basis of ${ }^{1} \mathrm{H}$ NMR spectrum, in which [3.3]MCP shows strong temperaturedependent phenomenon at low temperature. ${ }^{6-10}$

Shinmyozu and co-workers ${ }^{5}$ prepared [3.3]MCP using (p-tolylsulfonyl)methylisocyanide (TosMIC) as the cyclisation reagent, followed by Wolff-Kishner reduction. They have studied syn-anti conversions in other [3.3]MCPs, especially in relation to the size of the substituents such as halogens. ${ }^{11}$ Like the parent compound 9 -halo[3.3]MCPs prefer the syn conformation but the corresponding 2,11-diones favour the anti arrangement. Even one internal halogen substituent is sufficient to allow the isolation of a discrete syn or anti isomer. Although the effect on the ratio of syn and anti conformers of [3.3]MCPs was reported, it is still not clear what the effects are, not only properties of the internal substituents, but also having unsymmetrically substituted benzene rings arising from charge-transfer-type interactions between two benzene rings as well as steric effects of substituents at the 6 and 15 -positions.

All of the previous compounds are internally unsubstituted [3.3]MCP-2,11-diones and it is surprising that there are very few reports ${ }^{12,13}$ on the preparation of 9 -methyl- or 9-methoxy-analogues despite the fact that the chemical shift of the internal substituents, such as methyl and methoxy group provides a convenient probe for ${ }^{1} \mathrm{H}$ NMR studies of any possible conformational changes. We report here the synthesis and stereochemical assignments of 9 -substituted $[3.3] \mathrm{MCP}-$

2,11-diones and conversion to the corresponding [3.3]MCPs by Wolff-Kishner reduction. The substituent effects on the formation of the syn- and anti-conformations are discussed.

Results and discussion

Vögtle reported ${ }^{14-17}$ the preparation of carbocyclic [3_{n}]MCPs using TosMIC ${ }^{18,19}$ as the cyclisation reagent, which was applied in a new cyclisation procedure without phase-transfer conditions. ${ }^{20-24}$

This strategy can be employed for the preparation of [3.3]MCP containing two benzene rings. However, the preparation of [3.3]MCPs using the TosMIC method is difficult because of its low yield as well as the difficulty of the product separation from the other macrocyclic oligoketones, i.e. trimer and tetramer. Therefore, it has been very difficult to obtain sufficient amounts of the above compounds to investigate their chemical behaviour.

Therefore, we have selected the stepwise cyclisation of TosMIC adduct 2 with 1,3-bis(bromomethyl)-5-substituted benzenes $\mathbf{3}$ to prepare the desired cyclic dimer $\mathbf{4}$. The starting compounds, 2,6-bis(bromomethyl)-4-tert-butyl-1-substituted benzenes $\mathbf{1}$, are easily prepared by bromomethylation of 4-tert-butyltoluene and 4-tert-butylanisole ${ }^{25}$ using the tertbutyl group as a positional protecting group on the aromatic ring. ${ }^{26-32}$ Although TosMIC adduct 2a and 2b were obtained in 77 and 78% yields by the reaction of $\mathbf{1 a}$ and $\mathbf{1 b}$ with TosMIC as a mixture of two isomers, i.e. meso and $d l$, the attempted separation of these isomers of 2 pure failed. The preparation of 1,3-bis(bromomethyl)-5-substituted benzenes 3 are carried out by the treatment of 1,3-dimethyl-5-substituted benzenes with N -bromosuccinimide as following the reported procedure. ${ }^{28,30}$ The cyclic diketones 4 were synthesised by coupling the 1,3-bis(bromomethyl)-5-substituted benzenes 3 with TosMIC adduct 2 under highly diluted conditions in DMF with an excess of sodium hydride as shown in Scheme 2. We have improved the addition procedure in Vögtle's

Scheme 1

[^0]method. ${ }^{14-17}$ Thus, to a suspension of NaH in DMF a solution of $\mathbf{3}$ and TosMIC adducts $\mathbf{2}$ was added dropwise in DMF at room temperature. This not only improves the yield of the desired ketones but also makes the handling of the base (solid NaH) easier. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ shows methoxy protons as a singlet except diketone $\mathbf{4 d}$, which shows two kinds of methoxy protons, each as a singlet. By careful column chromatography (silica gel, Wako C-300), two isomers, anti$\mathbf{4 d}$ and syn-4d, are separated. They are thermally stable and do not interconvert at $150^{\circ} \mathrm{C}$ in DMSO solution and at $400^{\circ} \mathrm{C}$ in the solid state.

The structures of 4 have been elucidated by elemental analyses and spectral data. For instance, the mass spectral data for anti-4d $\left(\mathrm{M}^{+}=364\right)$ strongly supports a cyclic dimeric structure. The IR spectrum of anti- $\mathbf{4 d}$ shows the absorption of the carbonyl stretching vibration around $1697 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (in CDCl_{3}) of anti- $\mathbf{4 d}$ exhibits two sets of doublets at $\delta=3.28,3.76 \mathrm{ppm}(J=15.0 \mathrm{~Hz})$ and $\delta=3.40$, $3.45 \mathrm{ppm}(J=13.2 \mathrm{~Hz})$ for the $\mathrm{ArCH}_{2} \mathrm{COCH}_{2} \mathrm{Ar}$ methylene protons and a singlet for the internal methoxy group at an upfield shift $\delta=3.36 \mathrm{ppm}$ from anisole ($\delta=3.75 \mathrm{ppm}$) due to the ring current of the opposing aromatic ring. ${ }^{26-28,33-38}$ Similarly, the internal aromatic proton at 18 -position was observed at a higher field, $\delta 5.39 \mathrm{ppm}$ compared to that of the $\mathbf{3 b}$ at $\delta 7.28 \mathrm{ppm}$. These observations strongly suggest that compound anti-4d adopts the anti-conformation.

In contrast, the methoxy proton of $\operatorname{syn} \mathbf{- 4 d}$ is observed at δ 3.63 ppm . Furthermore, the aryl hydrogens at 5,7-positions can clearly be seen to be shielded at $\delta 6.61 \mathrm{ppm}$ by the adjacent ring, a common consequence of a face-to-face benzene ring. ${ }^{33-43}$ Also the tert-butyl protons was observed at higher field, $\delta 0.89 \mathrm{ppm}$ compared to that of the anti-4d at $\delta 1.34 \mathrm{ppm}$ due to the strong shielding effect of the benzene ring. These observations strongly suggest that compound syn-4d adopts
syn-conformation. Similarly, the assignments of structures for other anti conformers were readily apparent from their ${ }^{1} \mathrm{H}$ NMR spectra. The chemical shifts (δ) of the internal methoxy protons, the internal protons at the 18 -position, the protons of substituent at 15 position, aromatic protons and the tert-butyl protons of anti-9-substituted [3.3]MCP-2,11-diones anti-4a-f and syn-6-tert-butyl-9-methoxy-15-methyl[3.3]MCP-2, 11 -dione syn- $\mathbf{4 d}$ are compiled in Table 2.

Thus 9 -substituted analogue is exclusively formed in the anti-conformer independent on R^{1} of 2,6-bis[2-isocyano-2-(tolylsulfonyl)ethyl]-4-tert-butyl-1-substituted benzenes $\mathbf{2}$ and R^{2} of 1,3 -bis(bromomethyl)-5-substituted benzenes 3 , but only 9 -methoxy-15-methyl analogue $\mathbf{4 d}$ is formed in a mixture of syn- and anti-conformers. These findings suggest that in the case of 9-methyl analogue the aromatic $\pi-\pi$ interaction of two opposite benzene rings and the steric crowdness by the bulky tert-butyl group at the external positions 6 and 15 may inhibit the formation of the syn-conformer in the [3.3]MCP-2,11-diones system, Furthermore, the $\mathrm{CH}-\pi$ interaction ${ }^{44-51}$ between 9 -methyl group and the opposite aromatic π-electrons

Table 1 Anti-to-syn ratios in TosMIC cyclisation of $\mathbf{2}$ with $\mathbf{3}$

Substrate		Product yield/\%a	Isomer distribution/\%	
	3($\left.\mathrm{R}^{1}\right)$		anti	syn
Me	Me	$\mathbf{4 a}(48)$	100	0
Me	$t \mathrm{Bu}$	$\mathbf{4 b}(53)$	100	0
OMe	H	$\mathbf{4 c}(72)$	100	0
OMe	Me	$\mathbf{4 d}(71)$	60	40
OMe	$t \mathrm{Bu}$	$\mathbf{4 e}(72)$	100	0
OMe	Br	$\mathbf{4 f}(50)$	100	0

${ }^{\text {a }}$ Isolated yields. ${ }^{\text {b }}$ anti-to-syn ratios determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $20^{\circ} \mathrm{C}$

TosMIC (excess) $/ \mathrm{NaOH} / \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NI}$

$$
1 \mathrm{a} ; \mathrm{R}^{1}=\mathrm{Me}
$$

$$
\mathrm{b} ; \mathrm{R}^{1}=\mathrm{OMe}
$$

$2 \mathrm{a} ; \mathrm{R}^{1}=\mathrm{Me} \quad(77 \%)$
$\mathrm{b} ; \mathrm{R}^{1}=\mathrm{OMe}(78 \%)$ $2+$

ii) conc. HCl

$$
\begin{aligned}
3 \mathrm{a} ; \mathrm{R}^{2} & =\mathrm{H} \\
\mathrm{~b} ; \mathrm{R}^{2} & =\mathrm{Me} \\
\mathrm{c} ; \mathrm{R}^{2} & =t \mathrm{Bu} \\
\mathrm{~d} ; \mathrm{R}^{2} & =\mathrm{Br}
\end{aligned}
$$

$\mathrm{a} ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me}$
$\mathrm{b} ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=t \mathrm{Bu}$
c; $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{H}$
$\mathrm{d} ; \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{Me}$
$\mathrm{e} ; \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=t \mathrm{Bu}$
$\mathrm{f} ; \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{Br}$

Table $2{ }^{1} \mathrm{H}$ NMR spectral data of 6-tert-butyl-9-substituted [3.3]MCP-2,11-diones $4^{\text {a }}$

Compound	R^{1} protons		H_{18}	R^{2} protons		Benzene protons	tert-Butyl protons
anti-4a	Me	0.94	4.80	Me	2.14	6.86, 7.29	1.37
anti-4b	Me	0.97	4.94	$t \mathrm{Bu}$	1.24	7.15, $7 . .5$	1.24
anti-4c	OMe	3.34	5.54	H	7.06 ${ }^{\text {b }}$	7.10, 7.20	1.35
anti-4d	OMe	3.36	5.39	Me	2.22	6.84, 7.36	1.34
anti-4e	OMe	3.26	5.29	$t \mathrm{Bu}$	2.27	7.08, 7.19	1.36
anti-4f	OMe	3.40	5.58	Br	-	7.18, 7.19	1.34
syn-4d	OMe	3.63	7.22	Me	1.91	6.61, 6.97	0.89

aDetermined in CDCl_{3} by using SiMe_{4} as a reference and expressed in ppm given.
${ }^{\text {b }}$ Midpoint value of multiplet.
may also favour the formation of anti-conformer in the process of the cyclisation reaction. The $\mathrm{CH}-\pi$ interaction involving aliphatic CH moieties is well documented ${ }^{44}$ as either a conformation-controlling intramolecular process or a crystal-structure controlling intermolecular force, especially for inclusion complexes of calixarene derivatives. ${ }^{45-51}$

Although in the case of 9-methoxy analogue the detailed reaction pathway of the formation of syn-4d is still not clear from the present results, one might propose the $\mathrm{CH}-\pi$ interaction between the methyl group at 15 position and the opposite aromatic π-electrons, which may increase the formation of the syn-conformer during the present coupling reaction in spite of being the through-space interaction between the non-bonding electron pairs of the oxygen atom of the methoxy group and the opposite aromatic π-electrons of the anti-conformer, which may disfavour the formation of the latter.

The Wolff-Kishner reduction of syn-diketone syn4d afforded the desired syn-6,15-di-tert-butyl-9,18dimethoxy[3.3]MCP (syn-5d) in 85% yield. No formation of the corresponding anti-conformer has been observed under the reaction conditions used.

The structure of syn-5d has been elucidated by elemental analyses and spectral data. The ${ }^{1} \mathrm{H}$ NMR spectrum (in CDCl_{3}) of syn-5d exhibits a singlet at $\delta 3.63 \mathrm{ppm}$ for the methoxy protons. Furthermore, a singlet of the intra-annular proton H_{18} at $\delta 6.94 \mathrm{ppm}$ in addition to the resonances at $\delta 6.26$ and 6.48 ppm for the other two protons of the aromatic rings which can clearly be seen to be shielded by the adjacent ring, a common consequence of a face-to-face benzene ring. ${ }^{33-38}$ Also the tertbutyl protons and methyl protons were observed at higher field, $\delta 1.03$ and 1.96 ppm compared to those of the anti-4d at $\delta 1.34$ and 2.22 ppm due to the strong shielding effect of the benzene ring. These observations strongly suggest that compound syn-5d adopts syn-conformation.

Interestingly, similar results were obtained in the case of reduction of anti-4c-e to afford $\operatorname{syn}-\mathbf{5 c}-\mathbf{e}$ carried out under the same reaction conditions. anti-syn-Isomerisation was
observed under the reaction conditions used (Scheme 3). These findings strongly suggest that the ring inversion to the thermodynamically more stable syn-conformation is possible in the 9-methoxy[3.3]MCPs 5c-e.

On the other hand, as mentioned previously we have reported that syn-4d and anti-4d are thermally stable and do not interconvert at $150^{\circ} \mathrm{C}$ in DMSO solution and at $400^{\circ} \mathrm{C}$ in the solid state. Although the detailed mechanistic conclusion to rationalise the present observation of anti-to-syn-conversion is not clear, one might assume the similar behaviour that the [3.3]MCP exists in the syn geometry with a chair-chair arrangement of the trimethylene chains. ${ }^{5}$

Conclusions

Various anti-9-substituted [3.3]MCP-2,11-diones are exclusively obtained by the coupling reaction of the corresponding 2,6-bis[2-isocyano-2-(tolylsulfonyl)ethyl]-4-tert-butylbenzenes 2 and 1,3-bis(bromomethyl)-5-substituted benzenes $\mathbf{3}$ in dimethylformamide (DMF) with an excess of sodium hydride. In the case of the coupling reaction of 2,6-bis[2-isocyano-2-(tolylsulfonyl)ethyl]-4-tert-butylanisole 2b with 1,3-bis(bromomethyl)-5-methylbenzene 3b a mixture of anti- $\mathbf{4 d}$ and syn- $\mathbf{4 d}$ was obtained due to the $\mathrm{CH}-\pi$ interaction between the methyl group at 15 -position and the opposite aromatic π-electrons, which may favour the formation of syn-4d. Further studies on the chemical properties of the two conformers syn- and anti-4 and $\mathbf{5}$ are now in progress.

Experimental

All melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz on a Nippon Denshi JEOL FT-300 NMR spectrometer in deuteriochloroform with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal reference. IR spectra were measured as KBr pellets on a Nippon Denshi JIR-AQ2OM spectrometer. Mass spectra were obtained on a Nippon Denshi JMS-HX110A ultrahigh performance mass spectrometer at 75 eV using a direct-inlet system. Elemental analyses were performed by Yanaco MT-5.

Scheme 3

Materials

2,6-Bis(bromomethyl)-4-tert-butyltoluene (1a) and 2,6-bis(bromo-methyl)-4-tert-butylanisole (1b) were prepared by the reported procedure. ${ }^{25,52}$ The preparations of 1,3-bis(bromomethyl)-5-substituted benzenes (3a-d) were previously described. ${ }^{28,30}$

Preparation of the TosMIC adduct 2; typical procedure
To a mixture of 20% aqueous $\mathrm{NaOH}(40 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $n-\mathrm{Bu}_{4} \mathrm{NI}(700 \mathrm{mg}, 1.9 \mathrm{mmol})$ followed by a solution of TosMIC ($8 \mathrm{~g}, 41 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. After the reaction mixture was stirred at room temperature for 30 min , a solution of dibromide 1a $(4.0 \mathrm{~g}, 11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 2 h , quenched with water (100 mL), and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. It was washed with water $(100 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to leave a residue. To this residue methanol (100 mL) was added and left overnight in the refrigerator to give 2,6-bis [2-isocyano-2-(tolylsulfonyl)ethyl]-4-tert-butyltoluene (2a) (4.90 g , 77%) as pale brown prisms, m.p. $176^{\circ} \mathrm{C}$ (dec.); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2135$ $(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.26,1.27(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 2.26,2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.50$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.00-4.52\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}\right), 7.16$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 7.46 $(4 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar} H)$ and $7.92(4 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar} H) ; m / z$ $562\left(\mathrm{M}^{+}\right)$(Found: C, $65.95 ; \mathrm{H}, 6.06 ; \mathrm{N}, 4.73 . \mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}(562.75)$ requires C, 66.17 ; $\mathrm{H}, 6.09$; $\mathrm{N}, 4.98 \%$).

Compound 2b was similarly prepared in 78% yield.
2,6-Bis[2-isocyano-2-(tolylsulfonyl)ethyl]-4-tert-butylanisole (2b): Pale brown prisms (hexane), m.p. $150-151^{\circ} \mathrm{C}$ (dec.); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $2134(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.26,1.27(9 \mathrm{H}$, each s, $t \mathrm{Bu})$, 2.49, $2.50(6 \mathrm{H}$, each s, Me), 2.87, 2.99 (2 H , each dd, $J=11.7 / 13.7 \mathrm{~Hz}, \mathrm{CH}_{2}$), 3.66 , $3.77\left(2 \mathrm{H}\right.$, each dd, $\left.J=2.9 / 13.7 \mathrm{~Hz}, C H_{2}\right), 3.76,3.80(3 \mathrm{H}$, each s, OMe), 4.73, 4.83 (2 H , each dd, $J=2.9 / 11.7 \mathrm{~Hz}, C H$), $7.19,7.20(2 \mathrm{H}$, each s, $\mathrm{Ar} H$), $7.44,7.46(4 \mathrm{H}, \mathrm{d}, ~ J=8.3 \mathrm{~Hz}, \mathrm{Ar} H)$ and $7.87,7.93(4 \mathrm{H}$, d, $J=8.3 \mathrm{~Hz}, \mathrm{Ar} H$); $m / z 578\left(\mathrm{M}^{+}\right)$(Found: C, 64.56; H, 5.87; N, 4.73. $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}(578.75)$ requires $\mathrm{C}, 64.34 ; \mathrm{H}, 5.92$; $\left.\mathrm{N}, 4.84 \%\right)$.

Stepwise cyclisation of TosMIC adduct 2 and dibromide 3; typical procedure
To a suspension of $\mathrm{NaH}(2.1 \mathrm{~g}, 51 \mathrm{mmol})$ in DMF $(150 \mathrm{~mL})$ a solution of $\mathbf{2 b}(4.7 \mathrm{~g}, 8.5 \mathrm{mmol})$ and $\mathbf{3 b}(5.0 \mathrm{~g}, 8.5 \mathrm{mmol})$ in DMF (35 mL) was added dropwise over a period of 6 h . After the suspension was stirred for an additional 5 h at room temperature, it was quenched with ice-water (300 mL). The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 100 \mathrm{~mL})$, washed with water (200 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to 15 mL . Conc. $\mathrm{HCl}(15 \mathrm{~mL})$ was added, and the solution was stirred for 15 min . The organic layer was again extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, washed with water $(2 \times 100 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated and condensed under reduced pressure. The anti-to-syn ratio was determined as $60: 40$ by ${ }^{1} \mathrm{H}$ NMR spectrum. The residue was chromatographed on silica gel using CHCl_{3} as eluents to give crude anti-4d and syn-4d as a pale yellow solid, respectively. Recrystallisation from hexane afforded anti-4d ($965 \mathrm{mg}, 31 \%$) and syn-4d ($712 \mathrm{mg}, 23 \%$), respectively.
anti-6-tert-Butyl-9-methoxy-15-methyl[3.3]metacyclophane-2,11dione (anti-4d): Colourless prisms (hexane), m.p. $98-100^{\circ} \mathrm{C}$.; $v_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1697(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 2.22(3 \mathrm{H}, \mathrm{s}$, Me), $3.28\left(2 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.40(2 \mathrm{H}$, d, $\left.J=13.2 \mathrm{~Hz}, C H_{2}\right), 3.45\left(2 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.76(2 \mathrm{H}, \mathrm{d}$, $\left.J=15.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.39(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.84(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$ and 7.36 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H$); m/z 364 (M^{+}) (Found: C, 78.86; H, 7.68. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{3}$ (364.49) requires C, 79.09 ; H, 7.74%).
syn-6-tert-Butyl-9-methoxy-15-methyl[3.3]metacyclophane-2,11dione (syn-4d): Colourless prisms (hexane), m.p. $172-174^{\circ} \mathrm{C} ; v_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1706(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.89(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.91(3 \mathrm{H}$, s, $M e), 3.02\left(2 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, C H_{2}\right), 3.21(2 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}$, $\left.C_{2}\right), 3.55\left(2 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, C H_{2}\right), 3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74(2 \mathrm{H}, \mathrm{d}$, $\left.J=13.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.61(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.97(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$ and $7.22(1 \mathrm{H}$, $\mathrm{s}, \mathrm{Ar} H)$; $m / z 364\left(\mathrm{M}^{+}\right)$(Found: C, 78.96; H, 7.63. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{3}(364.49)$ requires C, 79.09; H, 7.74\%).

Compounds anti-4a-c and anti-4e-f were similarly prepared. The yields are listed in Table 1.
anti-6-tert-Butyl-9, 15-dimethyl[3.3]metacyclophane-2,11-dione (anti-4a): Colourless prisms (hexane), m.p. 148- $151^{\circ} \mathrm{C} ; \nu_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1699(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.94(3 \mathrm{H}, \mathrm{s}, M e), 1.37(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu})$, $2.14(3 \mathrm{H}, \mathrm{s}, M e), 3.25\left(2 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.46(2 \mathrm{H}, \mathrm{d}$, $\left.J=16.5 \mathrm{~Hz}, C H_{2}\right), 3.53\left(2 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.62(2 \mathrm{H}, \mathrm{d}$, $\left.J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.80(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.86(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$ and 7.29 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H$); m/z 348 (M^{+}) (Found: C, 82.84; H, 8.06. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{2}$ (348.49) requires C, $82.72 ; \mathrm{H}, 8.1 \%$).
anti-6,15-Di-tert-butyl-9-methyl[3.3]metacyclophane-2,11-dione (anti-4b): Colourless prisms (hexane), m.p. $144-147^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1699(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.97(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.24(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu})$, $3.39\left(2 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.50\left(2 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.61$ $\left(2 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, C H_{2}\right), 3.67\left(2 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, C H_{2}\right), 4.94(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH}), 7.15(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$ and $7.35(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H) ; m / z 390\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 83.28 ; \mathrm{H}, 8.65 . \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{2}$ (390.57) requires $\mathrm{C}, 83.03 ; \mathrm{H}, 8.77 \%$).
anti-6-tert-Butyl-9-methoxy[3.3]metacyclophane-2,11-dione (anti4c): Colourless prisms (MeOH), m.p. $110-111^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1698(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.35(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 3.32(2 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 3.33(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.33\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.48(2 \mathrm{H}, \mathrm{d}$, $\left.J=12.2 \mathrm{~Hz}, C H_{2}\right), 3.74\left(2 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}, C H_{2}\right), 5.55(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$, $7.05-7.10(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$ and $7.25(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; m / z 350\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 78.71 ; \mathrm{H}, 7.48 . \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3}(350.46)$ requires $\left.\mathrm{C}, 78.83 ; \mathrm{H}, 7.48 \%\right)$.
anti-6,15-Di-tert-butyl-9-methoxy[3.3]metacyclophane-2,11dione (anti-4e): Colourless prisms (hexane), m.p. $142-144^{\circ} \mathrm{C} ; \mathrm{v}_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1688(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.27(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.36(9 \mathrm{H}, \mathrm{s}$, $t \mathrm{Bu}), 3.26(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.29\left(2 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.39(2 \mathrm{H}$, d, $\left.J=13.7 \mathrm{~Hz}, C H_{2}\right), 3.51\left(2 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, C H_{2}\right), 3.73(2 \mathrm{H}, \mathrm{d}$, $\left.J=15.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.29(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.08(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.19(2 \mathrm{H}$, $\mathrm{s}, \mathrm{Ar} H$); $m / z 406$ (M ${ }^{+}$) (Found: C, $79.75 ; \mathrm{H}, 8.47 . \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{3}(406.57)$ requires $\mathrm{C}, 79.77$; $\mathrm{H}, 8.43 \%$).
anti-6-tert-Butyl-15-bromo-9-methyl[3.3]metacyclophane-2,11dione (anti-4f): Colourless prisms (hexane), m.p. $137-139^{\circ} \mathrm{C} ; \mathrm{v}_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1699(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 3.34(2 \mathrm{H}, \mathrm{d}$, $\left.J=15.1 \mathrm{~Hz}, C_{2}\right), 3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.45(2 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}$, $C H_{2}$), $3.65\left(2 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, C H_{2}\right), 3.81\left(2 \mathrm{H}, \mathrm{d}, J=15.1 \mathrm{~Hz}, C H_{2}\right)$, $5.58(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.18(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$ and $7.19(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H) ; m / z 428$, $430\left(\mathrm{M}^{+}\right)$(Found: C, 64.48 ; H, 5.65. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrO}_{3}$ (429.36) requires C, 64.34; H, 5.87\%).

Wolff-Kishner reduction of 5; typical procedure

A mixture of anti-4d ($1.20 \mathrm{~g}, 3.3 \mathrm{mmol}$), KOH ($1.28 \mathrm{~g}, 23.0 \mathrm{mmol}$), 100% hydrazine hydrate ($0.35 \mathrm{~mL}, 6.2 \mathrm{mmol}$), and triethylene glycol $\left(3 \times 50 \mathrm{~mL}\right.$) was heated at $120^{\circ} \mathrm{C}$ for 2 h and then at $220^{\circ} \mathrm{C}$ for 3 h . The cooled mixture was poured into water (50 mL), acidified with diluted HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, washed with water $(2 \times 20 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was chromatographed on silica gel using hexane/benzene, $(1: 1)$ as eluents to give crude $\operatorname{syn}-\mathbf{5 d}$ as a colourless solid. Recrystallisation from hexane afforded syn-6-tert-butyl-9-methoxy-18-methyl[3.3]metacyclophane (syn-5d) 886 mg , $80 \%)$ as colourless prisms, m.p. $90-92^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.03(9 \mathrm{H}, \mathrm{s}$, $t \mathrm{Bu}), 1.63-1.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.96(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.21-2.29(2 \mathrm{H}, \mathrm{m}$, CH_{2}), 2.39-2.66 (4H, m, CH $)_{2}$, 2.90-3.02 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.55-2.68 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.26(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.48(2 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH})$ and $6.94(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H) ; m / z 336\left(\mathrm{M}^{+}\right)$(Found: C, 85.79; H, 9.52. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}(336.52)$ requires C, $\left.85.66 ; \mathrm{H}, 9.58 \%\right)$.

Compounds syn-5c and syn-5e were similarly prepared in 70 and 80% yields, respectively.
syn-6-tert-Butyl-9-methoxy[3.3]metacyclophane (syn-5c): Colourless prisms (MeOH), m.p. $112-114^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.09(9 \mathrm{H}, \mathrm{s}$, $t \mathrm{Bu}), 1.70-1.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.30-2.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.47-2.76$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.00-3.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{O} M e), 6.54$ $(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Ar} H), 6.55(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.73(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, $\mathrm{Ar} H$) and 7.18 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H$); m/z 322 (M^{+}) (Found: C, 85.65; H, 9.39. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}$ (322.49) requires C, 85.66; $\mathrm{H}, 9.38 \%$).
syn-6,15-Di-tert-butyl-9-methoxy[3.3]metacyclophane (syn-5e): Colourless oil; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.06(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.14(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu})$, $2.25-2.38\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.48-2.65\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.61-2.73(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.57(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.58(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$ and $7.10(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; m / z 378\left(\mathrm{M}^{+}\right)$(Found: C, 85.36; H, 9.99. $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}$ (378.6) requires C, $85.66 ; \mathrm{H}, 10.12 \%$).

Received 14 October 2008; accepted 2 December 2008
 Paper 08/0226 doi: 10.3184/030823409X401105
 Published online: 23 January 2009

References

1 A. Paudel, T. Shimizu, J. Hu and T. Yamato, J. Chem. Research, 2008, 731. 2 F. Vögtle, Cyclophane chemistry, John Wiley \& Sons Ltd., 1993.
3 M.F. Semmelhack, J.J. Harrison, D.C. Young, A. Gutiérrez, S. Rafii and J. Clardy, J. Am. Chem. Soc., 1985, 107, 7508.

4 F. Vögtle and L. Schunder, Chem. Ber., 1969, 102, 2677.
5 T. Shinmyozu, T. Inazu and T. Yoshino, Chem. Lett., 1976, 1405.
6 K. Sako, T. Hirakawa, N. Fujimoto, T. Shinmyozu, T. Inazu and H. Horimoto, Tetrahedron Lett., 1988, 29, 6275.

7 K. Sako, T. Shinmyozu, H. Takemura, M. Suenaga and T. Inazu, J. Org. Chem., 1992, 57, 6536.
8 J. Nishimura, A. Ohbayashi, Y. Horiuchi, Y. Okada, Y. Namanaka and A. Oku, J. Org. Chem., 1987, 57, 6536.

9 Y. Fukazawa, Y. Takeda, S. Usui and M. Kodama, J. Am. Chem. Soc., 1988, 110, 7842.
10 L. Ernst, Pro. Nucl. Magn. Reson. Spectrosc., 2000, 37, 47.
11 T. Shinmyozu, T. Inazu and T. Yoshino, Mem. Fac. Sci., Kyushu Univ. Ser. C, 1985, 15, 79.
12 S. Osada, Y. Miyahara, T. Shinmyozu and T. Inazu, Mem. Fac. Sci., Kyushu Univ. Ser. C, 1993, 19, 39.
13 S. Osada, Y. Miyahara, N. Shimizu and T. Inazu, Chem. Lett., 1995, 1103.

14 J. Breitenbach and F. Vögtle, Synthesis, 1992, 41.
15 J. Breitenbach, F. Ott and F. Vögtle, Angew. Chem., 1992, 104, 360.
16 J. Breitenbach, F. Ott and F. Vögtle, Angew. Chem. Int. Ed. Engl., 1992, 31, 307.
17 F. Ott, J. Breitenbach, M. Nieger and F. Vögtle, Chem. Ber., 1993, 126, 97.
18 O. Possel and A.M. van Leusen, Tetrahedron Lett., 1977, 4229.
19 D.van Leusen and A.M. van Leusen, Tetrahedron Lett., 1977, 4233.
20 K. Kobiro, M. Takashi, N. Nishikawa, K. Kikuchi, Y. Tobe and Y. Odaira. Tetrahedron Lett., 1987, 28, 3825.
21 K. Kurosawa, M. Suenaga, T. Inazu and T. Yoshino, Tetrahedron Lett., 1982, 23, 5335.
22 T. Shinmyozu, Y. Hirai and T. Inazu, J. Org. Chem., 1986, 51, 1551.
23 T. Meno, K. Sako, M. Suenaga, M. Mouri, T. Shinmyozu, T. Inazu and H. Takemura, Can. J. Chem., 1990, 68, 440.

24 K. Sako, T. Meno, H. Takemura, T. Shinmyozu and T. Inazu, Chem. Ber, 1990, 123, 630.
25 M. Tashiro and T. Yamato, Org. Prep. Proc. Int., 1981, 13, 1.
26 M. Tashiro and T. Yamato, J. Org. Chem., 1981, 46, 4556.
27 M. Tashiro and T. Yamato, J. Org. Chem., 1983, 48, 1461.
28 M. Tashiro and T. Yamato, J. Org. Chem., 1985, 50, 2939.
29 T. Yamato, J. Matsumoto, K. Tokuhisa, M. Kajihara, K. Suehiro and M. Tashiro, Chem. Ber., 1992, 125, 2443.

30 T. Yamato, J. Matsumoto, K. Tokuhisa, K. Tsuji, K. Suehiro and M. Tashiro, J. Chem. Soc., Perkin Trans. 1, 1992, 2675.

31 T. Yamato, A. Miyazawa and M. Tashiro, J. Chem. Soc., Perkin Trans. 1, 1993, 3127.
32 T. Yamato, A. Miyazawa and M. Tashiro, Chem. Ber., 1993, 126, 2505.
33 B.H. Smith, in Bridged Aromatic Compounds, Academic Press, New York. 1964.
34 F. Vögtle and P. Neumann, Angew. Chem., 1972, 84, 75.
35 F. Vögtle and P. Neumann, Angew. Chem. Int. Ed. Engl., 1972, 11, 73.
36 F. Vögtle and P. Neumann, Synthesis, 1973, 85.
37 F. Vögtle and G. Höhner, Top. Curr. Chem., 1978, 74, 1.
38 P.M. Keehn and S.M. Rosenfield, Cyclophanes, Academic Press, New York, Vol. 1, 1983.
39 R.H. Mitchell and V. Boekelheide, Tetrahedron Lett., 1970, 1197.
40 R.H. Mitchell and V. Boekelheide, J. Chem. Soc., Chem. Commun., 1970, 1555.

41 W. Anker, G.W. Bushnell and R.H. Mitchell, Can. J. Chem., 1979, 57, 3080.

42 R.H. Mitchell, R.J. Carruther, L. Mazuch and T.W. Dingle, J. Am. Chem. Soc., 1982, 104, 2544.
43 R.H. Mitchell and V. Boekelheide, J. Am. Chem. Soc., 1974, 96, 1547.
44 M. Nishio and M. Horita, Tetrahedron, 1989, 45, 7201.
45 C.D. Andreetti, R. Ungaro and A. Pochini, J. Chem. Soc., Chem. Comтип., 1979, 1005.
46 R. Ungaro, A. Pochini, C.D. Andreetti and O. Domiano, J. Chem. Soc., Perkin Trans. 2, 1985, 197.
47 M.A. McKervey, E.M. Seward, G. Ferguson and B.L. Ruhl, J. Org. Chem., 1986, 51, 3581.
48 D.J. Cram, S. Karbach, H. -E. Kim, C.B. Knobler, E.F. Marverick, J.L. Ericson and R.C. Helgeson, J. Am. Chem. Soc., 1988, 110, 2229.

49 P. Soncini, S. Bonsignore, E. Dalcanale and F. Ugozzoli, J. Org. Chem., 1992, 57, 4608.
50 J.L. Atwood, S.G. Bott, C. Jones and C.L. Raston, J. Chem. Soc., Chem. Comтип., 1992, 1349.
51 K. Kobayashi, Y. Asakawa, Y. Kikuchi, H. Toi and Y. Aoyama, J. Am. Chem. Soc., 1993, 115, 2648.
52 M. Tashiro and T. Yamato, J. Org. Chem., 1981, 46, 1543.

[^0]: * Correspondent. E-mail: yamatot@cc.saga-u.ac.jp

